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Abstract
We obtain three new solvable, real, shape-invariant potentials starting from
the harmonic oscillator, Pöschl–Teller I and Pöschl–Teller II potentials on the
half-axis and extending their domain to the full line, while taking special care
to regularize the inverse-square singularity at the origin. The regularization
procedure gives rise to a delta-function behaviour at the origin. Our new
systems possess underlying nonlinear potential algebras, which can also be
used to determine their spectra analytically.

PACS numbers: 0365, 1130P

1. Introduction

In recent years, several authors have investigated the eigenstates of complex potentials [1],
especially those with PT symmetry and real spectra. In particular, potentials obtained by
replacing the real coordinate x by a complex variable x + ic in a class of exactly solvable
shape-invariant potentials has been considered by Znojil [2]. For these problems, which are
defined on the whole real line, an extension to the complex domain was made in order to avoid
an inverse-square singularity at the origin. The price one pays for taming the singularity is to
deal with a complex potential. However, it was argued that owing to the PT-symmetric nature of
the potential, the eigenvalues were still real. As an explicit example, it was shown [2] that a new
exactly solvable complex harmonic-oscillator-like potential with two shifted sets of equally
spaced energy levels could be generated. The same technique was also applied to explicitly
get the eigenstates of complex Pöschl–Teller-I- and Pöschl–Teller-II-like potentials [3].

One of the purposes of this paper is to show that potentials with an inverse-square
singularity at the origin do not necessarily call for moving into the complex domain. In
fact, we can obtain the spectra of [2, 3] simply by judicious application of the formalism of
supersymmetric quantum mechanics (SUSYQM). Specifically, the spectrum described in [2]
for the harmonic-oscillator-like potential is identical to that previously found by us [4], where
the discussion focused on real potentials with two sets of equally spaced eigenvalues. In this
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paper, we extend previous results and also find new real but singular potentials corresponding
to the Pöschl–Teller I and Pöschl–Teller II potentials. Our potentials are shape invariant [5],
and consequently their exact spectra can be obtained by standard algebraic procedures followed
in SUSYQM. We also establish that these singular potentials possess an interesting underlying
nonlinear potential algebra [6–10]. Explicit representations of the generators are given, which
provide an alternative algebraic approach to determine the spectrum.

For completeness, we provide in section 2 a brief review of SUSYQM [11,12]. In section 3,
we present our framework for generating new shape-invariant potentials starting from well
known solvable problems with an inverse-square singularity at the origin. We show that if the
coefficient of this singularity is restricted within a narrow range, one can enlarge the domain
of the potential to the negative real axis while maintaining unbroken supersymmetry and shape
invariance. Working with an explicit example of a harmonic oscillator with an inverse-square
singularity and using the formalism of SUSYQM, we show that such an extension necessitates
the introduction of a δ-function at the origin [4] which eventually yields a non-equidistant
spectrum for the system. We show that similar extensions can be made for Pöschl–Teller I
and Pöschl–Teller II potentials as well and thus generate new shape-invariant potentials. We
explicitly derive their eigenenergies and eigenfunctions. For these potentials, it is important
to note that the eigenenergies depend on two parameters, both of which are transformed in the
shape invariance condition, in contrast to previous work on shape invariance. In section 4, we
study the potential algebra underlying these systems and generate their spectrum by algebraic
means.

2. Supersymmetric quantum mechanics

In SUSYQM [12], taking h̄ = 2m = 1, the partner potentials V±(x, a0) are related to the
superpotentialW(x, a0) by

V±(x, a0) = W 2(x, a0)±W ′(x, a0) (1)

where a0 is a set of parameters. It is assumed that the superpotential W(x) is continuous and
differentiable. The corresponding Hamiltonians H± have a factorized form

H− = A†A H+ = AA† A = d

dx
+W(x) A† = − d

dx
+W(x). (2)

We consider the case of unbroken supersymmetry and take ψ0 ∼ exp
(− ∫ x

W(y) dy
)

to be
normalizable. This is clearly the nodeless zero-energy ground-state wavefunction for H−,
since Aψ0 = 0.

The Hamiltonians H+ and H− have exactly the same eigenvalues except that H− has an
additional zero-energy eigenstate. More specifically, the eigenstates ofH+ andH− are related
by

E
(−)
0 = 0 E

(+)
n−1 = E(−)n ψ

(+)
n−1 ∝ Aψ(−)n A† ψ(+)n ∝ ψ(−)n+1 n = 1, 2, . . . .

(3)

Supersymmetric partner potentials are called shape invariant if they both have the same x-
dependence up to a change of parameters a1 = f (a0) and an additive constant which we denote
by R(a0) [13, 14]. Often, it is convenient to write this constant in the form of g(a1)− g(a0).
The shape invariance condition is

V+(x, a0) = V−(x, a1) + R(a0) = V−(x, a1) + g(a1)− g(a0). (4)

The property of shape invariance permits an immediate analytic determination of energy
eigenvalues [5, 13], and eigenfunctions [14]. If the change of parameters a0 → a1 does not
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break supersymmetry, H−(x, a1) also has a zero-energy ground state and the corresponding
eigenfunction is given by ψ(−)0 (x, a1) ∝ exp

( − ∫ x
x0
W(y, a1) dy

)
. Now using equations (3),

(4) we have

E
(−)
1 = R(a0) ψ

(−)
1 (x, a0) = A†(x, a0) ψ

(+)
0 (x, a0) = A†(x, a0) ψ

(−)
0 (x, a1). (5)

Thus for an unbroken supersymmetry, the eigenstates of the potential V−(x) are

E
(−)
0 = 0 E(−)n =

n−1∑
k=0

R(ak) =
n−1∑
k=0

[g(ak+1)− g(ak)] = g(an)− g(a0)

ψ
(−)
0 ∝ e− ∫ x

x0
W(y,a0) dy

ψ(−)n (x, a0) =
[
− d

dx
+W(x, a0)

]
ψ
(−)
n−1(x, a1) (n = 1, 2, 3, . . .).

(6)

These formulae are valid provided the change of parameters a1 = f (a0) maintains unbroken
supersymmetry. In previous work on shape-invariant potentials, changes of parameters
corresponding to translation a1 = a0 + β [13] and scaling a1 = qa0 with 0 < q � 1 [15] have
been discussed. However, a reflection change of parameters a1 = −a0, even if it maintained
shape invariance, was not acceptable since it could not maintain unbroken supersymmetry for
the hierarchy of potentials built on H−.

3. New singular shape-invariant potentials

The methodology of this paper for obtaining new shape-invariant potentials is as follows. One
begins with a known shape-invariant potential, defined for x � 0, which has an inverse-square
singularity λ/x2 at the origin. This potential is fully solvable, with eigenfunctions which
vanish at the origin. One now considers extending the domain to also include the region
x < 0. This extension is possible only if − 1

4 < λ < 3
4 . If the strength of the singular

term is restricted to be in this limited domain, the singularity is called ‘soft’, and the potential
is said to be ‘transitional’ [16]. We shall show explicitly how a new change of parameters
corresponding to the reflection a1 = −a0 is now admissible, since it maintains both shape
invariance and unbroken supersymmetry, while still keeping the partner potentials in the soft
singularity domain. We can then obtain eigenspectra using the shape invariance formalism.
As explicit examples, we present detailed analyses for the harmonic oscillator, Pöschl–Teller
I and Pöschl–Teller II potentials.

3.1. New shape-invariant potential obtained from the harmonic oscillator potential

Consider a particle constrained to move in a three-dimensional harmonic oscillator potential

V−(x, l, ω) = 1

4
ω2x2 +

l(l + 1)

x2
+

(
l − 1

2

)
ω (0 < x <∞). (7)

This potential is generated from the superpotential

W(x, l, ω) = 1

2
ωx +

l

x
l < 0. (8)

The supersymmetric partner potential is

V+(x, l, ω) = 1

4
ω2x2 +

l(l − 1)

x2
+

(
l +

1

2

)
ω. (9)

These two partner potentials are shape invariant since V+(x, l, ω) can be written as V−(x, l −
1, ω) + R(l, ω). Here, the remainder R(l, ω) = 2ω is independent of the parameter l. This
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Figure 1. Energy eigenvalues corresponding to equation (10).

yields an equidistant spectrum En = 2nω for the harmonic oscillator. However, there is
another change of parameters that also maintains shape invariance between these two partner
potentials, namely

V+(x, l, ω) = V−(x,−l, ω) + R′(l, ω)

R′(l, ω) = (2l + 1)ω.
However, it is important to point out that since we are at present constrained to be on the

half-axis x > 0, this second change of parameters, (l, ω) −→ (−l, ω) is not acceptable for
l < 0. Neither of the two zero-energy solutions ψ(±)0 (x,−l, ω) ∝ exp

(± ∫ x
W(x,−l, ω) dx

)
is normalizable and hence supersymmetry is spontaneously broken. As shown in section 2,
the solvability of shape-invariant systems crucially depends upon superpotentials retaining
unbroken supersymmetry when parameters are transformed, that is, it is essential thatV−(x, a1)

be a potential with unbroken supersymmetry.
Let us now consider the same superpotential with an extension of the domain to the entire

real axis. The asymptotic values of the superpotential are given by the 1
2ωx term at x → ±∞,

which is independent of the parameter l. Thus the asymptotic behaviour of the ground-state
wavefunction is dictated by the ωx-term and is not affected by flipping of the value of l in
the l

x
-term of the superpotential. Thus, in contrast with the half-axis case, supersymmetry

now remains unbroken even with the change of parameters (l, ω) −→ (−l, ω), and hence this
transformation is allowed to generate new shape-invariant potentials with richer spectra. This
leads to

En = nω + 2lωPn Pn ≡ [1 − (−1)n]/2. (10)

This new shape invariance yields a new set of eigenenergies superimposed on the old equidistant
spectrum and shown in figure 1.

We now focus on the region nearx = 0. In SUSYQM, it is important that the superpotential
W(x, a0) be a continuous and differentiable function. In our example, the above requirement
is satisfied everywhere except at the point x = 0, where the superpotential of equation (8)
has an infinite discontinuity. Such a discontinuity is not acceptable, and needs regularization.
Consider a regularized, continuous superpotential W̃ (x, a0, ε) which reduces to W(x, a0) in
the limit ε → 0. One such choice is

W̃ (x, a0, ε) = W(x, a0) f (x, ε) (11)

where

f (x, ε) = tanh2 x

ε
. (12)
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Figure 2. The superpotential W̃ of equation (11) and the corresponding potential Ṽ− of
equation (13) for the two cases (a) l � 0 and (b) l � 0.

The moderating factor f provides a smooth interpolation through the discontinuity, since it is
unity everywhere except in a small region of order ε around x = 0. In this region, W̃ (x, a0, ε)

is linear with a slope l/ε2. The potential5 Ṽ−(x, a0, ε) corresponding to the superpotential
W̃ (x, a0, ε) is

Ṽ−(x, a0, ε) = W̃ 2(x, a0, ε)− W̃ ′(x, a0, ε). (13)

In the limit ε → 0, Ṽ−(x, a0, ε) reduces to

Ṽ−(x, a0) = V−(x, a0)− 4W(x, a0)
x

|x| δ(x) (14)

where we have used limε→0
1
2ε sech2 x

ε
= δ(x) and limε→0 tanh x

ε
= x

|x| . Thus we see that

the potential Ṽ−(x, a0) has an additional singularity at the origin over V−(x, a0) given by
 (x) ≡ −4 l δ(x)|x| .

Note that in the potential shown in figure 2(a), the δ-function singularity is instrumental
in producing a bound state at E0 = 0.

5 At this point one may wonder whether we have lost our cherished shape invariance due to the introduction of this
moderating factor. In the appendix, we show that the shape invariance indeed remains intact in the limit ε → 0, and
so does the solvability of the model.
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Naively, in the limit ε → 0, the potential of equation (14) appears identical to a three-
dimensional oscillator with a frequency ω and angular momentum l. However, there are
some more subtle but important differences. First, it is defined over the entire real axis
(−∞ < x < ∞) and not just the half line. For a proper communication between the
two halves, we must have a ‘softness’ of the inverse-square term. Normalizability of the
wavefunction requires that the coefficient λ of the inverse-square term be in the transition
region − 1

4 < λ < 3
4 [16]. More specifically, for (l > 0), one has 0 < l(l + 1) < 3

4 and
for (l < 0) one has − 1

4 < l(l + 1) < 0. The important special case of the one-dimensional
harmonic oscillator has l = 0: it corresponds to l(l + 1) = 0 and no x−2 singularity. For
transition potentials, the two independent solutions of the Schrödinger equation are both square
integrable at the origin, and hence acceptable. Eigenstates for the potential Ṽ−(x, a0) can be
obtained from equation (6). The lowest four are

E0 = 0 ψ0 ∝ x−l e− 1
4ωx

2

E1 = (2l + 1)ω ψ1 ∝ x1+l e− 1
4ωx

2

E2 = 2ω ψ2 ∝ (
2l − 1 + ωx2

)
x−le− 1

4ωx
2

E3 = 2ω + (2l + 1)ω ψ3 ∝ ( − 2l − 3 + ωx2
)
x1+l e− 1

4ωx
2
.

(15)

General expressions for these eigenfunctions and corresponding eigenenergies are

E2n = 2nω ψ2n ∝ x−le− 1
4ωx

2
L

−l− 1
2

n

[
ωx2

2

]

E2n+1 = 2nω + (2l + 1)ω ψ2n+1 ∝ x1+le− 1
4ωx

2
L
l+ 1

2
n

[
ωx2

2

] (16)

where Ln are the standard Laguerre polynomials.
In deriving the above eigenspectrum, we have implicitly made the reasonable assumption

that supersymmetry is unaffected by the regularization procedure. The fact that we get finite
results is an indirect confirmation of the convergence of the spectrum as ε → 0. Another
check is that the alternative regularization method of going to the complex plane yields the
same spectrum [2, 3].

3.2. New shape-invariant potential obtained from the Pöschl–Teller I potential

As a second example, we consider the Pöschl–Teller I superpotential

W(x,A,B) = A tan x − B cot x 0 < x < π/2. (17)

The supersymmetric partner potentials are then given by

V−(x,A,B) = A(A− 1) sec2 x + B(B − 1) cosec2x − (A + B)2 (18)

and

V+(x,A,B) = A(A + 1) sec2 x + B(B + 1) cosec2x − (A + B)2. (19)

Here, A and B are both positive in order for V−(x,A,B) to have a zero-energy ground state.
Again, one can readily check that there are two possible relations between parameters

such that above two potentials exhibit shape invariance. One of them is the conventional
(A → A+ 1, B → B + 1). The second possibility is (A → A+ 1, B → −B). As explained
in the previous section, this second relationship breaks supersmmetry on the (0, π/2) domain
and it is allowed only if the domain of x is extended to range −π/2 < x < π/2. The first
transformation among parameters (A → A+1, B → B+1) has been studied extensively in the
literature. It is the second transformation that yields new results and will be considered here.
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Figure 3. The potential corresponding to equation (20) for A = 1.5 and B = −1/3 and its energy
spectrum.

Thus, the relationship among parameters that we consider is (Ak+1 = Ak + 1, Bk+1 = −Bk).
This potential also requires a careful analysis in the vicinity of x = 0, where two half-axes are
being sewed together. Again, the need for continuity and differentiability of the superpotential
requires its regularization, as was done in equation (11) for the harmonic oscillator. A similar
analysis then leads to a new singular shape-invariant potential

Ṽ−(x,A,B) = [
A(A− 1) sec2 x + B(B − 1) cosec2x − (A + B)2

]
+ 4 B cot x

x

|x| δ(x).
(20)

This potential obeys the shape-invariance condition:

Ṽ+(x,A,B) = Ṽ−(x,A + 1,−B) + (A + 1 − B)2 − (A + B)2 (21)

and its eigenvalues and eigenfunctions are given by

E0 = 0

ψ0 ∝ cosA x sinB x

E1 = (A + 1 − B)2 − (A + B)2

ψ1 ∝ cosA x sin−B−1 x [(2B − 1) cos2 x + 1]

E2 = (A + 2 + B)2 − (A + B)2

ψ2 ∝ cosA x sinB x [(4B + 2) cos4 x − (6B + 3) cos2 x + 1]

E3 = (A + 3 − B)2 − (A + B)2

ψ3 ∝ cosA x sin−B−1 x [(−8B2 + 16B − 6) cos6 x + (12B2

−32B + 13) cos4 x + (20B − 8) cos2 x + 1].

Thus, the general formula for eigenvalues is

En = (A + n + (−1)nB)2 − (A + B)2. (22)

The eigenspectrum is shown in figure 3, whereas the superpotential and potential corresponding
to two choices of A,B are shown in figure 4.
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Figure 4. The superpotential W̃ and the corresponding potential (equation (20)) for A = 1.5 for
the two cases (a) B = −1/3 and (b) B = 1/3.

Note that, to avoid level crossing, we must have En > En−1. This leads to the constraint
− 1

2 < B <
1
2 . Interestingly, this is the same constraint that one needs for the normalizability of

the wavefunction at the origin and hence to the possibility of communication between regions
(− 1

2π, 0) and (0, 1
2π) of the domain.

3.3. New shape-invariant potential obtained from the Pöschl–Teller II potential

The last example that we consider is that of the Pöschl–Teller II potential described by

W(x,A,B) = A tanh x − B coth x 0 < x <∞. (23)

Here, A and B both need to be positive and satisfy the condition A > B for the potential
V−(x,A,B) to have a zero-energy ground state and to ensure unbroken supersymmetry. The
supersymmetric partner potentials are then given by

V+(x,A,B) = −A(A− 1) sech2x + B(B + 1) cosec2x + (A− B)2 (24)

and

V−(x,A,B) = −A(A + 1) sec2 x + B(B − 1) cosec2x + (A− B)2. (25)
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Here too we have two possible relations between parameters for these potentials to be
shape invariant. They are (A → A − 1, B → B + 1), and (A → A − 1, B → −B). As
explained before in the last two examples, the second transformation requires an extension of
the range to (−∞,∞). The new singular potential generated for this case is given by

Ṽ−(x,A,B) = [ − A(A− 1) sech2x + B(B + 1) cosech2x + (A− B)2]
+4 B coth x

x

|x| δ(x). (26)

The shape-invariance condition obeyed by this potential is given by

Ṽ+(x,A,B) = Ṽ−(x,A + 1,−B) + (A− B)2 − (A− 1 + B)2 (27)

and the eigenvalues and eigenfunctions are given by

E0 = 0
ψ0 ∝ cosh−A x sinhB x
E1 = (A− B)2 − (A− 1 + B)2

ψ1 ∝ cosh−A x sinh−B−1 x [(2B − 1) cosh2 x + 1]
E2 = (A− B)2 − (A− 2 − B)2
ψ2 ∝ coshA x sinhB x [(4B + 2) cosh4 x − (6B + 3) cosh2 x + 1]
E3 = (A− B)2 − (A− 3 + B)2

ψ3 ∝ coshA x sinh−B−1 x
[
(8B2 − 16B + 6) cosh6 x − (12B2 − 32B + 13) cosh4 x

−(20B − 8) cosh2 x − 1
]
.

(28)

Thus, the general formula for eigenvalues is

En = (A− B)2 − (A− n− (−1)nB)2. (29)

Again, to steer clear of the level crossing problem, we must haveEn > En−1. This leads to the
constraint − 1

2 < B <
1
2 , which, as stated earlier, is the same constraint that one needs for the

normalizability of the wavefunction at the origin and for an effective communication between
two halves of the x-axis.

4. Potential algebra

So far, we have discussed three types of new solvable singular potential. We will now derive
the potential algebra underlying them. We will show that the algebra based on the generators
{J+, J−, J3} is nonlinear [6–10]. Potential algebras provide an alternative way of getting the
eigenvalues by algebraic means.

Consider the following ansatz:

J+ = c−1 A† (x, α(N), β(N)) J− = A (x, α(N), β(N)) c J3 = N ≡ c†c (30)

where c, c† and c−1 are three operators satisfying [c, c†] = 1, and c c−1 = c−1 c = 1. An
example of such operators is given by c = eiφ, c−1 = e−iφ and c† = i∂φ e−iφ , where φ is some
arbitrary real variable. The operators A and A† of equation (30) are obtained from equation (2)
via the substitution a0 ≡ {A,B} → {α(N), β(N)}, where α and β are real, arbitrary functions
to be determined later. We can readily check that

[J3, J±] = ±J± , [J+, J−] = −R(J3) ≡ g(α(N), β(N))− g(α(N − 1), β(N − 1)). (31)

The last commutation relation is a consequence of the algebraic shape-invariance condition [9]

H+(x, α(N), β(N))−H− (x, α(N − 1), β(N − 1))

= g(α(N − 1), β(N − 1))− g(α(N), β(N)) (32)
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which is the operatorial ‘twin’ of the classical shape-invariance condition equation (4) obtained
via the mappings {A0, B0} → {α(N), β(N)} and {A1, B1} → {α(N − 1), β(N − 1)}
respectively.

The functions α(N) and β(N) are determined by requiring that the change α(N) →
α(N − 1) and β(N) → β(N − 1) correspond to the change of parameters a0 → a1. For
example, α(N) = A − N corresponds to a translational change of parameters A0 → A1 =
A0 +1, because α(N−1) = α(N)+1. Similarly, β(N) = (−1)N corresponds to the reflection
B0 → B1 = −B0 , since β(N − 1) = −β(N).

For any shape-invariant potential, we know the function g(α, β), which explicitly gives
the potential algebra (31). From its representations, we can obtain the energy spectrum for the
given problem.

To find a representation of the potential algebra, let us consider a set of eigenvectors
common to both H− = J+J− and J3 = N denoted by {|n〉, n = 0, 1, . . .}. The action of
J+, J− and J3 on this basis is given by

J+|n〉 = a(n + 1)|n + 1〉 J−|n〉 = a(n)|n− 1〉 J3|n〉 = n|n〉. (33)

Here we have chosen, without any loss of generality, the coefficients a(n) to be real. Note that
since J−|0〉 = 0, we have the initial condition a(0) = 0. There is a connection between the
coefficients a(n) and the eigenspectrum of the Hamiltonian. Observe that

H−(x, α(N − 1), β(N − 1)) |n〉 = J+J−|n〉 = a2(n)|n〉. (34)

Therefore, in order to find the spectrum of the Hamiltonian we have to determine the coefficients
a2(n). This can be done by projecting the last equation from (31) on |n〉 and solving the
resulting equation recursively. Thus, we obtain a2(n)− a2(n + 1) = g(n)− g(n− 1) having
the solution a2(n) = g(−1) − g(n − 1). Here we have denoted g(n) ≡ g(α(n), β(n)).
But a2(n) corresponds to the eigenvalues of the Hamiltonian H−(x, α(N − 1), β(N − 1)),
or ‘classically’ speaking to the shifted set parameters a1. Therefore the eigenenergies of the
initial Hamiltonian H−(x, α(N), β(N)) (corresponding to the set of parameters a0) are

En = g(α(0), β(0))− g(α(n), β(n)). (35)

We make contact with equation (6) by observing that {α(n− k), β(n− k)} ≡ ak .

4.1. The harmonic oscillator

To show how our procedure works, it is instructive to build explicitly the potential algebra
of the harmonic oscillator. The superpartner potentials V− and V+ are given in equations (7)
and (9) respectively. Under the change of parameters {l, ω} → {l−1, ω} we have the following
shape-invariance condition:

H+(x, l, ω) = H−(x, l − 1, ω) + (−2ω (l − 1))− (−2ω l).

To build the potential algebra, first we find the functions α and β associated with the above
change of parameters. We have immediately α(N) = l +N , β(N) = ω. Next, we can build
the concrete realization of the potential algebra using the ansatz (30) and the superpotential
from (8). The resulting generators

J+ = c−1

(
− d

dx
+

1

2
x ω +

l +N

x

)

J− =
(

d

dx
+

1

2
x ω +

l +N

x

)
c (36)

J3 = N ≡ c†c
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satisfy the ‘canonical’ commutation relations (31), where the function g is given by g(N) ≡
g(α(N), β(N)) = −2ω (l + N). Finally, using the formula (35) we get the spectrum
En = g(0)− g(n) = 2ω n, which is exactly what we have expected.

Next, let us consider the new singular shape-invariant potential corresponding to the
change of parameters {l, ω} → {−l, ω}. In this case α(N) = −(−1)N l and β(N) = ω. From
equation (30) we get

J+ = c−1

(
− d

dx
+

1

2
x ω − (−1)N l

x

)
J− =

(
d

dx
+

1

2
x ω − (−1)N l

x

)
c

J3 = N ≡ c†c.

(37)

The commutation relations (31) together with the algebraic shape-invariance condition (32)
yield in this case [J+, J−] = −ω (−2(−1)N l+1) from where we get g(N) = ω ((−1)N l−N).
Therefore, the resulting eigenspectrum (35) is En = ω n + ω l (1 − (−1)n).

4.2. The Pöschl–Teller I potential

We build the algebraic model for the new shape-invariant Pöschl–Teller-I-like potential by
taking into account that corresponding to the change of parameters {A,B} → {A+ 1,−B} we
have α(N) = A− N and β(N) = (−1)NB. Then, using the superpotential (17) one gets the
following expressions for the generators of the associated potential algebra:

J+ = c−1

(
− d

dx
+ (A−N) tan x − (−1)NB cot x

)

J− =
(

− d

dx
+ (A−N) tan x − (−1)NB cot x

)
c J3 = N ≡ c†c.

(38)

Using as before the algebraic shape-invariance condition (32) we obtain in this case [J+, J−] =
−(A+N+1+(−1)(N+1)B)2+(A+N+(−1)NB)2. Therefore we getg(N) = −(A+N+(−1)NB)2

and the corresponding eigenspectrum En = g(0)− g(n) = −(A + B)2 + (A− n + (−1)nB).

4.3. The Pöschl–Teller II potential.

For the new Pöschl–Teller-II-potential-like case, for the change of parameters {A,B} →
{A−1,−B} we have α(N) = −(A−N) and β(N) = (−1)NB and the corresponding algebra
is therefore generated by

J+ = c−1

(
− d

dx
+ (−A +N) tanh x − (−1)NB coth x

)

J− =
(

− d

dx
+ (−A +N) tanh x − (−1)NB coth x

)
c J3 = N ≡ c†c.

(39)

In the above representation the explicit form of the superpotential (23) was taken into account.
The commutation relations (31) together with the algebraic shape-invariance condition (32)
yield in this case g(N) = (−A + N − (−1)NB)2. Using (35), one obtains as expected, the
eigenspectrum for this potential En = g(0)− g(n) = (A + B)2 − (−A + n− (−1)nB)2.

5. Conclusions and comments

We have generated several new shape-invariant potentials on the whole line starting from
well known potentials on the half line. To ensure continuity and differentiability of the
superpotential, our procedure requires a regularization at the origin. This extension not only
maintains shape invariance, it also allows the possibility of a new transformation among
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parameters (B → −B) that was not allowed on the half-axis. This transformation results
in new superpotentials, albeit singular, that are defined over the entire real axis and have richer
spectra than those defined over the half-axis. It is shown further that the eigenspectra of these
new real singular shape-invariant potentials may also be derived from a nonlinear potential
algebra.

Since we have obtained and discussed the exact eigenvalues and eigenfunctions of three
new singular potentials using the machinery of SUSYQM, it is of interest to ask what one gets
in the WKB approximation. Let us recall that Comtet et al have shown the exactness of the
SWKB quantization condition [13, 17]∫ x2

x1

√
En −W 2 dx = nπh̄

for all known shape-invariant problems with unbroken SUSY where parameters are related by
a1 = a0 + δ [20].

For broken SUSY, Inomata and Junker [18] gave the quantization condition∫ x2

x1

√
En −W 2 dx = [n + 1/2]πh̄.

For both cases, the turning points x1, x2 are solutions ofW 2(x) = En.
Our new singular potentials allow a change of parameters that, if considered in half-axes

only, leads the system to alternate between unbroken and broken phases of supersymmetry as
ak → ak+1 [20]. It is interesting to note that the spectrum of these singular potentials can be
derived, using a somewhat more complex but exact quantization condition which alternates
between the broken and unbroken SUSY cases:∫ x2

x1

√
En −W 2 dx = [n + 1/2Pn]

where Pn is equal to [1 − (−1)n]/2.
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Appendix

In this appendix, we show that the shape invariance of our new potentials is maintained
during the process of extending the domain to the whole real axis and introducing the
moderating factor f (x, ε). Let us recall that our old superpotential W(x,A,B) is of the
form A *(x) + B [*(x)]−1, where the function *(x) is x, tan x or tanh x for the harmonic
oscillator, Pöschl–Teller I and Pöschl–Teller II respectively6.

6 The change of parameters associated with shape invariance in these three potentials are of the form

A −→ Ã =



A

A + 1 and B −→ B̃ = −B.

A− 1.
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Note that in all cases, [*(x)]−1 −→ 1/x at the origin. W(x,A,B) is replaced by a
regularized, continuous superpotential W̃ (x,A,B, ε) given by

W̃ (x,A,B, ε) = W(x,A,B) f (x, ε) (A1)

where f (x, ε) is unity everywhere except in a small region of order ε around x = 0. One such
function f (x, ε) is given by tanh2 (x/ε). In the limit ε → 0, we assume that the f (x, ε) → 1
and df (x,ε)

dx → 2 x
|x|δ(x). The potentials Ṽ∓(x,A,B, ε) corresponding to the superpotential

W̃ (x,A,B, ε) are then given by

Ṽ∓(x,A,B, ε) = W 2(x,A,B)f 2(x, ε)∓
(

dW(x,A,B)

dx
f (x, ε) +

df (x, ε)

dx
W(x,A,B)

)
.

(A2)

Now

Ṽ+(x,A,B, ε)− Ṽ−(x, Ã, B̃, ε) = V+(x,A,B)− V−(x, Ã, B̃)

+
df (x, ε)

dx

(
W(x,A,B) +W(x, Ã, B̃)

)
= R(A,B) +

df (x, ε)

dx

(
B + B̃

)
[*(x)]−1

= R(A,B) (A3)

where we have used the limits of f and f ′ and B̃ = −B. This establishes the shape invariance
of the regularized superpotential.
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